91 research outputs found

    Spatial and temporal variations in the incidence of dust storms in Saudi Arabia revealed from in situ observations

    Get PDF
    Monthly meteorological data from 27 observation stations provided by the Presidency of Meteorology and Environment (PME) of Saudi Arabia were used to analyze the spatial and temporal distribution of atmospheric dust in Saudi Arabia between 2000 and 2016. These data were used to analyze the effects of environmental forcing on the occurrence of dust storms across Saudi Arabia by considering the relationships between dust storm frequency and temperature, precipitation, and wind variables. We reveal a clear seasonality in the reported incidence of dust storms, with the highest frequency of events during the spring. Our results show significant positive relationships (p < 0.005) between dust storm occurrence and wind speed, wind direction, and precipitation. However, we did not detect a significant relationship with temperature. Our results reveal important spatial patterns, as well as seasonal and inter-annual variations, in the occurrence of dust storms in Saudi Arabia. For instance, the eastern part of the study area experienced an increase in dust storm events over time, especially in the region near Al-Ahsa. Similarly, an increasing trend in dust storms was also observed in the west of the study area near Jeddah. However, the occurrence of dust storm events is decreasing over time in the north, in areas such as Hail and Qaisumah. Overall, the eastern part of Saudi Arabia experiences the highest number of dust storms per year (i.e., 10 to 60 events), followed by the northern region, with the south and the west having fewer dust storm events (i.e., five to 15 events per year). In addition, our results showed that the wind speeds during a dust storm are 15–20 m/s and above, while, on a non-dust day, the wind speeds are approximately 10–15 m/s or lower. Findings of this study provide insight into the relationship between environmental conditions and dust storm occurrence across Saudi Arabia, and a basis for future research into the drivers behind these observed spatio-temporal trends

    Evaluating MODIS dust-detection indices over the Arabian Peninsula

    Get PDF
    Sand and dust storm events (SDEs), which result from strong surface winds in arid and semi-arid areas, exhibiting loose dry soil surfaces are detrimental to human health, agricultural land, infrastructure, and transport. The accurate detection of near-surface dust is crucial for quantifying the spatial and temporal occurrence of SDEs globally. The Arabian Peninsula is an important source region for global dust due to the presence of extensive deserts. This paper evaluates the suitability of five different MODIS-based methods for detecting airborne dust over the Arabian Peninsula: (a) Normalized Difference Dust Index (NDDI); (b) Brightness Temperature Difference (BTD) (31–32); (c) BTD (20–31); (d) Middle East Dust Index (MEDI) and (e) Reflective Solar Band (RSB). We derive detection thresholds for each index by comparing observed values for ‘dust-present’ versus ‘dust-free’ conditions, taking into account various land cover settings and analyzing associated temporal trends. Our results suggest that the BTD (31–32) method and the RSB index are the most suitable indices for detecting dust storms over different land-cover types across the Arabian Peninsula. The NDDI and BTD (20–31) methods have limitations in identifying dust over multiple land-cover types. Furthermore, the MEDI has been found to be unsuitable for detecting dust in the study area across all land-cover types

    High spatio-temporal monitoring of century-old biochar effects on evapotranspiration through the ETLook model: a case study with UAV and satellite image fusion based on additive wavelet transform (AWT)

    Full text link
    It can be challenging to fuse remotely-sensed images with large differences in spatial resolutions. In this paper, we used additive wavelet transform (AWT) to fuse Landsat-8 (30 m) and unmanned aerial vehicle (UAV) images (7 cm and 3.7 cm for thermal and multispectral images, respectively) as one of the primary studies. AWT image fusion generated sharpened Landsat-8 (L-8) images which were significantly correlated with coarse resolution images, while also well preserving the spatial details. Surface albedo (α0), normalized difference vegetation index (NDVI), and surface temperature (ST) were computed from multispectral and thermal sensors on board of UAV and L-8 platforms. High-resolution UAV and AWT sharpened L-8 images were then used in ETLook model to estimate evapotranspiration (ET) across an agricultural farm enriched with century-old biochar. High spatio-temporal analysis demonstrated a significant decrease in α0 across the biochar patches during the early development stages of winter wheat. Moreover, biochar significantly stimulated the development of wheat canopies towards the middle of the cropping season. There were however no impacts at the end of the season due to dense wheat canopies covering the aggravated dark colour soil across the biochar patches. ST was not affected by biochar either at the beginning or towards the end of the season. Neither was there any impact of biochar on actual ET over the season. Our approach can help to develop robust techniques for fusion of UAV and satellite images in light of climate-smart agriculture, and is also applicable to other farms with any specific precision agricultural treatments

    Multifunctional landscapes identification and associated development zoning in mountainous area

    Get PDF
    Multifunctional landscape has become a new discipline growth point in landscape ecology. Globally mountainous areas occupy about one fifth of Earth's surface. However, few studies focused on landscape multifunctionality in mountainous areas. Taking Dali Bai Autonomous Prefecture, China, as a case study area, five typical landscape functions (net primary productivity, soil retention, water yield, crop production, and residential support) were quantified and mapped. Hotspots of multiple landscape functions were identified using spatial overlap tools, interaction between each landscape function pair was discussed through Spearman's rank correlation analysis, and development zoning was conducted based on landscape function bundle. The results showed that, about 61% of the study area had at least one kind of landscape function hotspot, with only 2.7% covering three or more kinds of landscape function hotspots. Significant trade-offs or synergies existed between all pairs of landscape functions, except the pair of net primary productivity and residential support. With the application of Self-Organizing Feature Maps (SOFM) method, the study area was divided into four types of development zones (i.e. ecological shelter area, ecological transition area, suburban development area, and urban agglomeration area) which were all corresponding to different landscape function bundles. This study could provide spatial guidance for differentiated sustainable developing in mountainous areas according to local conditions of landscape multifunctionality

    Integrating spatial continuous wavelet transform and normalized difference vegetation index to map the agro-pastoral transitional zone in Northern China

    Get PDF
    The agro-pastoral transitional zone (APTZ) in Northern China is one of the most important ecological barriers of the world. The commonly-used method to identify the spatial distribution of ATPZ is to apply a threshold rule on climatic or land use indicators. This approach is highly subjective, and the quantity standards vary among the studies. In this study, we adopted the spatial continuous wavelet transform (SCWT) technique to detect the spatial fluctuation in normalized difference vegetation index (NDVI) sequences, and as such identify the APTZ. To carry out this analysis, the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI 1-month data (MODND1M) covering the period 2006–2015 were used. Based on the spatial variation in NDVI, we identified two sub-regions within the APTZ. The temporal change of APTZ showed that although vegetation spatial pattern changed annually, certain areas appeared to be stable, while others showed higher sensitivity to environmental variance. Through correlation analysis between the dynamics of APTZ and precipitation, we found that the mean center of the APTZ moved toward the southeast during dry years and toward the northwest during humid years. By comparing the APTZ spatial pattern obtained in the present study with the outcome following the traditional approach based on mean annual precipitation data, it can be concluded that our study provides a reliable basis to advance the methodological framework to identify accurately transitional zones. The identification framework is of high importance to support decision-making in land use management in Northern China as well as other similar regions around the world

    Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil

    Get PDF
    Acknowledgments We acknowledge funding through the SOILS-R-GGREAT (NE/P019498/1) project of the greenhouse gas removal (GGR) program. The GGR program is financed by the UK Natural Environment Research Council (NERC), Engineering and Physical Science Research Council (EPSRC), Economic and Social Science Research Council (ESRC) and the UK department for Business, Energy and Industrial Strategy (BEIS).Peer reviewedPublisher PD

    Linking ecosystem services and circuit theory to identify ecological security patterns

    Get PDF
    The rapid process of urbanization, accompanied by the sharp increase of urban population and expansion of artificial surface, has resulted in the loss of natural ecosystems and the degradation of ecosystem services. Identifying and protecting key places that have high importance for ecological sustainability are great challenges. Ecological security patterns are such an integrated approach to protecting regional ecological sustainability. In this study, taking Yunnan Province, China as a case study area, ecological sources were identified through ecosystem services, and circuit theory was used to model ecosystem processes in heterogeneous landscapes via calculating the ‘resistance’ or ‘current’, and thus to identify ecological corridors and key ecological nodes. The results showed that, ecological security patterns included 66 ecological sources, 186 ecological corridors, 24 pinch-points and 10 barriers. In details, the ecological sources were mainly distributed in the southwest and northwest of Yunnan Province, with the ecological corridors locating along the high mountains, and both ecological sources and corridors were mostly covered with forest land. Pinch-points covered by forest land and cultivated land, were distributed in the middle of Yunnan Province along the rivers. Approximately 75.9% nature reserves were located in the identified ecological sources, and the remainings were mainly distributed in eastern Yunnan Province with small area, showing the effectiveness in identifying ecological security patterns. Among 81 projects of low–slope hill development carried out in Yunnan Province, 46.9% showed potential human stress on regional ecological security. Based on ecosystem services and circuit theory, this study provides a new approach to identifying the spatial range of ecological corridors and the specific location of key nodes for effective ecological conservation and restoration

    An anticipatory life cycle assessment of the use of biochar from sugarcane residues as a greenhouse gas removal technology

    Get PDF
    Acknowledgments We thank Dr Ondřej Mašek from the University of Edinburgh and Dr Bernardo M.M.N. Borges from the University of São Paulo for their insights and advices on pyrolysis technologies and sugarcane management. We acknowledge funding through the UP-Green-LCA (NE/P019668/1) and Soils-R-GGREAT (NE/P019498/1) projects of the greenhouse gas removal (GGR) programme. The GGR programme is financed by the UK Natural Environment Research Council (NERC), Engineering and Physical Science Research Council (EPSRC), Economic and Social Science Research Council (ESRC) and the UK department for Business, Energy and Industrial Strategy (BEIS).Peer reviewedPublisher PD

    Assessing the source and delivery processes of organic carbon within a mixed land use catchment using a combined n-alkane and carbon loss modelling approach

    Full text link
    peer reviewedPurpose: Understanding fluxes of soil organic carbon (OC) from the terrestrial to aquatic environments is crucial to evaluate their importance within the global carbon cycle. Sediment fingerprinting (SF) is increasingly used to identify land use-specific sources of OC, and, while this approach estimates the relative contribution of different sources to OC load in waterways, the high degree of spatial heterogeneity in many river catchments makes it challenging to precisely align the source apportionment results to the landscape. In this study, we integrate OC SF source apportionment with a carbon loss model (CLM) with the aim of: (i) reducing ambiguity in apportioning OC fluxes when the same land use exists in multiple locations within a catchment; and (ii) identifying factors affecting OC delivery to streams, e.g., buffer zones. Methods: Two main approaches were used in this study: (i) identification of the sources of freshwater bed sediment OC using n-alkane biomarkers and a Bayesian-based unmixing model; and (ii) modelling and analysis of spatial data to construct a CLM using a combination of soil OC content modelling, RUSLE soil erosion modelling and a connectivity index. The study was carried out using existing OC and n-alkane biomarker data from a mixed land use UK catchment. Results: Sediment fingerprinting revealed that woodland was the dominant source of the OC found in the streambed fine sediment, contributing between 81 and 85% at each streambed site. In contrast, CLM predicted that arable land was likely the dominant source of OC, with negligible inputs from woodland. The areas of the greatest OC loss in the CLM were predicted to be from arable land on steeper slopes surrounding the stream channels. Results suggest extensive riparian woodland disconnected upslope eroded soil OC and, concomitantly, provided an input of woodland-derived OC to the streams. It is likely the woodland contribution to streambed OC is derived from litter and leaves rather than soil erosion. Conclusion: This study demonstrates how location-specific OC sources and delivery processes can be better determined using sediment fingerprinting in combination with CLM, rather than using sediment fingerprinting alone. It highlights that, although wooded riparian buffer strips may reduce the impact of upslope, eroded soil OC on waterways, they could themselves be a source of OC to stream sediments through more direct input (e.g., organic litter or leaf debris). Characterising this direct woodland OC as a separate source within future fingerprinting studies would allow the contributions from any eroded woodland soil OC to be better estimated

    Spatial identification of conservation priority areas for urban ecological land: An approach based on water ecosystem services

    Get PDF
    How to effectively prevent land degradation and ecosystem deterioration in the process of urbanization has been the focus of land degradation researches in urban areas. Urban ecological land can be defined as the natural base on which a city relies to ecologically survive. It closely links the social economy with the natural eco‐environment, providing an important integrated approach to resolve the contradiction between urban expansion and natural ecosystems conservation in the process of urbanization. The research question addressed in this study is how to accurately identify the conservation priority areas for urban ecological land. Taking Zhuhai City, located in China, as an example, an approach based on seven kinds of water ecosystem services was put forward, combining social demand and natural supply for the services to determine service targets and conservation priority areas. The results showed that the conservation priority areas in Zhuhai City covered 868 km2, accounting for 51.03% of the total land area, which were mainly covered by woodlands or paddy fields and fish ponds. In addition, by synthesizing ecological importance and ecological sensitivity, management zones for urban ecological land were delineated, including 510 km2 of primary control areas and 358 km2 of secondary control areas. In the supply and demand view of water ecosystem services, this study put forward an integrated ecosystem‐based approach for conservation priority area identification of urban ecological land, aiming to prevent land degradation and achieve urban ecological sustainability
    corecore